Kontraharmonisches Mittel

Formel und Beispiele zum Kontraharmonischen Mittel einer Zahlenreihe


In der Mathematik ist ein kontraharmonisches Mittel eine Funktion, die zum harmonischen Mittel komplementär ist.

Das kontraharmonisches Mittel ist ein Begriff aus der Statistik. Man berechnet diesen Mittelwert, indem man das arithmetische Mittel der Quadrate der Zahlen teilt durch das arithmetische Mittel der Zahlen.


Formeln zum kontraharmonischen Mittel

\(\displaystyle C(x_1, x_2,...x_n)=\frac{x^2_1+x^2_2+ ... +x^2_n}{x_1+x_2+ ... +x_n}\)

Beispiel


Im folgenden Beispiel berechnen wir den Mittelwert der 5 Zahlen

\(\displaystyle 5,3,4,2,6 \)

Die Formel lautet

\(\displaystyle C(x_1, x_2,, x_3, x_4, x_5)\)\(\displaystyle =\frac{x^2_1+x^2_2+x^2_3+x^2_4+x^2_5}{x_1+x_2+x_3+x_4+x_5}\)

\(\displaystyle C(5,3,4,2,6) \)\(\displaystyle = \frac{25+9+16+4+36}{5+3+4+2+6}= \frac{90}{20}= 4.5\)

Kontraharmonisches Mittel online berechnen →


Arithmetisches Mittel (Durchschnitt)Five NumberMedianEmpirische VerteilungsfunktionGeometrisches MittelGepoolte StandardabweichungGepoolte VarianzHarmonisches MittelKontraharmonisches MittelKovarianz

Ist diese Seite hilfreich?            
Vielen Dank für Ihr Feedback!

Das tut uns leid

Wie können wir die Seite verbessern?