Vector Angle

Formulas and examples for calculating the angle between two vectors

This page describes how to calculate the angle between two vectors.

The angle can be calculated from the dot product and the magnitude of the vectors.

The following formula is used for this:   \(\displaystyle cos ∡ (\overrightarrow{x},\overrightarrow{y})= \frac{\overrightarrow{x}·\overrightarrow{y}}{\left|\overrightarrow{x}\right|·\left|\overrightarrow{y}\right|}\)

For the vectors

\(\overrightarrow{x} =\left[\matrix{a\\b}\right]\)       \(\overrightarrow{y} =\left[\matrix{a\\b}\right]\)

the formula is

\(\displaystyle cos ∡ (\overrightarrow{x},\overrightarrow{y})= \frac{\left[\matrix{x_a\\x_b}\right]·\left[\matrix{y_a\\y_b}\right]} {\left|\left[\matrix{x_a\\x_b}\right]\right|·\left|\left[\matrix{y_a\\y_b}\right]\right|} \) \(\displaystyle =\frac{x_a·y_a+x_b·y_b}{\sqrt{x_a^2+x_b^2}·\sqrt{y_a^2+y_b^2}}\)

Example


The following example calculates the angle of the following vectors:

\(\overrightarrow{x} =\left[\matrix{3\\0}\right]\)       \(\overrightarrow{y} =\left[\matrix{5\\5}\right]\)
\(\displaystyle cos ∡ (\overrightarrow{x},\overrightarrow{y})= \frac{\left[\matrix{3\\0}\right]·\left[\matrix{5\\5}\right]} {\left|\left[\matrix{3\\0}\right]\right|·\left|\left[\matrix{5\\5}\right]\right|} \) \(\displaystyle =\frac{3·5+0·5}{\sqrt{3^2+0^2}·\sqrt{5^2+5^2}}\)

                        \(\displaystyle = \frac{15}{3·\sqrt{2·5^2}}=\frac{15}{3·5·\sqrt{2}} = \frac{15}{15·\sqrt{2}}=\frac{1}{\sqrt{2}}\)

The result is   \(\displaystyle ∡ (\overrightarrow{x},\overrightarrow{y})= acos\left(\frac{1}{\sqrt{2}}\right)=45°\)


The image below shows the graphical representation of the vectors and angle.



Vector Definition
Vector Calculation
Vector Addition
Vector Subtraction
Vector Magnitude
Vector Dot Product
Vector Cross Produkt
Vector Angle
Triple Product

Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?