Geometric mean

Formulas and examples for the geometric mean of a data series


The geometric mean is the mean, which is obtained by taking the n-th root from the product of n numbers. The geometric mean is always less than or equal to the arithmetic mean.

Im Gegensatz zum arithmetischen Mittel ist das geometrische Mittel nur für nichtnegative Zahlen geeignet und nur für echt positive reelle Zahlen sinnvoll, denn wenn ein Faktor gleich null ist, ist schon das ganze Produkt gleich null. Für komplexe Zahlen wird es nicht eingesetzt, da die komplexen Wurzeln mehrdeutig sind.

In contrast to the arithmetic mean, the geometric mean is only suitable for non-negative numbers and only makes sense for truly positive real numbers, because if a factor is equal to zero, the entire product is already equal to zero. It is not used for complex numbers because the complex roots are ambiguous.


Geometric mean formulas

This average is calculated by taking the nth root from the product of n numbers.


Example

In the following example we calculate the geometric mean of the 5 numbers

\(\displaystyle 5,3,4,2,6 \)

To do this, the numbers are multiplied and the 5th root is taken from the product.


Calculate geometric means online →


More Statistics Tutorials

Arithmetic Mean (Average)
Covariance
Five Number
Median
Empirical Distribution
Geometric Mean
Pooled Standard Deviation
Pooled Variance
Harmonic Mean
Contraharmonic Mean


Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?